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Abstract

Backbone routers with tens-of-gigabits-per-second links are indispensable communication devices to deploy on the Inter-
net. The IP lookup operation is the most critical task that must be improved in routers. In this paper, we first present a
systematic method to compare prefixes of different lengths. The list of prefixes can then be sorted and stored in a sequential
array, which is contrary to the linked lists used in most of trie-based structures. Next, fast binary and multiway prefix searches
assisted by auxiliary prefixes are proposed. We also developed a 32-bit representation to encode the prefixes of different
lengths. For the large routing tables currently available on the Internet, the proposed multiway prefix search can achieve
the worst-case number of memory accesses of three and four if the sizes of the CPU cache lines are 64 bytes and 32 bytes,
respectively. The IPv4 simulation results show that the proposed prefix searches outperform the existing IP lookup schemes
in terms of lookup times and memory consumption. The simulations using IPv6 routing tables also show the performance
advantages of the proposed binary prefix searches. We also analyze the performance of the existing lookup schemes by con-
currently considering the lookup speed, the update speed, and the memory consumption. Although the update speed of the
proposed prefix search is worse than the dynamic routing table schemes with log(N) complexity for a table of N prefixes, our
analysis shows that the overall performance of the proposed binary prefix search outperforms all the existing schemes.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Internet traffic continues to grow at an unprece-
dented rate due to the advent of the World Wide
Web. This has put tremendous pressure on Internet
providers who have to set up the necessary infra-
structure to support this growth. A crucial part of
this infrastructure is the router. Backbone routers
1389-1286/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2006.05.005

* Tel.: +886 6 2757575.
E-mail address: ykchang@mail.ncku.edu.tw
with a link speed at several 10-gigabits-per-second
(Gbps), such as OC-192, 10 Gigabits and OC-768,
40 Gigabits, are commonly deployed. These back-
bone routers have to forward millions of packets
per second at each port. All tasks that have to be
executed by the router after receiving a packet can
be divided into time-critical (fast path) and non-
time-critical (slow path) operations depending on
the packet type and its frequency. Time-critical
operations that are operated on the majority of
the packets must be implemented in a highly
.
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efficient and optimized manner to keep up with the
high link speed and router bandwidth. As described
in ‘‘Requirements for IP Version 4 Routers’’ [26],
this includes IP packet validation, packet life-
time control, checksum recalculation, destination
address parsing, and IP table lookups. Among all
the tasks performed by routers, the IP table lookups
entail the most time-consuming process in which the
destination addresses are looked up against a
forwarding table by a forwarding engine that deter-
mines the next-hops in the network, where the
packets should be sent.

The forwarding table must maintain an entry for
every allocated network address block that is repre-
sented as a route prefix. However, the continuous
growth of the number of hosts and networks has
made the forwarding tables in the backbone routers
grow very rapidly. To efficiently use the IP address
space and slow down the growth of the forwarding
tables, the classless IP subnet scheme called Class-
less Inter-Domain Routing (CIDR) was introduced.
While CIDR reduces the size of the forwarding
tables, the table lookup problem now becomes more
complex. With CIDR, each route prefix in the for-
warding table can vary from 1 to 32 bits instead of
8, 16, or 24 bits in Classful Address scheme. As a
result, the search in a forwarding table can no
longer be performed by exact matching because
the length of the prefix cannot be derived from the
address itself. The table lookup problem becomes
the ‘‘Longest Prefix Match’’ problem, which deter-
mines the longest route prefix to a destination
address because there may be more prefixes that
match the destination address.

Router designers were challenged to come up
with fast and efficient algorithms for solving the
Longest Prefix Match (LPM) problem. Three met-
rics are primarily considered in designing routers:

1. Search time. This is the time taken by the for-
warding engine to look up the forwarding table
for the destination address of an incoming
packet.

2. Storage requirement. This is the memory space
required for the table lookup data structure.

3. Update time. This is the time required to insert/
delete a route prefix into/from the forwarding
table.

Many IP table lookup algorithms have been pro-
posed to solve LPM problems. For instance, Ruiz-
Sanchez et al. classified a large variety of table
lookup algorithms and compared their worst-case
complexities of lookup latency, update time, and
storage usage [17]. The binary trie is the basic data
structure used in most IP lookup algorithms. The
binary trie allows the search for LPM to be in a
bit-by-bit fashion. It is mostly implemented using
linked lists in which each trie node has left and right
pointers pointing to its left and right subtries,
respectively. We cannot store all the nodes of the
binary trie in a sequential array and then apply
the binary search because there is no mechanism
to compare two prefixes of different lengths.

In this paper, we shall propose two new IP
lookup algorithms called binary prefix search and
multiway prefix search based on a new mechanism
to sort the prefixes in the forwarding table. Our goal
is to store the prefixes in a linear array, and thus a
faster search speed and a smaller memory require-
ment can be achieved. By generating less than N

auxiliary prefixes in a routing table of N prefixes,
the naı̈ve binary search can be applied. As a result,
the worst-case lookup complexity of log(N) can
be obtained, and the storage complexity of the
proposed binary prefix search can be as good as
O(N). In order to further reduce the storage require-
ment, we also propose a 32-bit representation to
encode prefixes of any length. The comparisons
and matching operations can be performed effi-
ciently by using the 32-bit CPU instructions. The
proposed binary prefix search can be easily extended
to a multiway search scheme. Using a special array
index technique, our multiway prefix search can
achieve the maximum degree of the tree which is
up to 17 and 33 using 32-byte and 64-byte cache
lines, respectively. Therefore, the proposed multi-
way scheme can achieve at most four and three
memory accesses for an IP lookup based on a for-
warding table containing more than 120K route pre-
fixes. These simulation results show that the
proposed prefix search algorithms perform better
than other existing IP lookup algorithms.

The rest of the paper is organized as follows. Sec-
tion 2 describes existing IP lookup schemes, and
Section 3 illustrates the basic data structure and
the detailed lookup algorithms proposed in this
paper. Section 4 shows the efficient encoding
schemes for prefixes, and Section 5 improves the
lookup performance by extending the proposed
algorithms onto the fast cache architecture. Section
6 presents the results of the performance compari-
sons using real routing tables, and finally, the last
section gives the concluding remarks.
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2. Existing schemes and discussions

In this section, we classify the existing schemes
based on three aforementioned metrics, namely,
search speed, update speed, and memory require-
ment, instead of their data structures. These three
metrics are the most important metrics used for
evaluating different IP lookup schemes. However,
it should be noted that improving one may signifi-
cantly degrade another. A comprehensive review
on the existing IP lookup schemes before 2001 can
be found in [17]. In this paper, we are interested in
the software-based lookup schemes that can be
implemented in routers using network processors.
We will not address designs with special hardware
supports such as Ternary content-addressable mem-
ory (TCAM) [24] and pipelined ASIC-based engines
[1].

2.1. Schemes for optimizing search speed

Ideally, we can use 4 GB to store the 1-byte port
numbers of all IP addresses. Thus, only one memory
access is needed for a lookup. However, the prefix
update speed is slow, and the memory requirement
is too high.

Multibit tries [20,18] basically avoid consuming
too much memory by using hierarchical data struc-
tures. A multibit trie in which each node has 2k chil-
dren is called a k-bit trie, and k is called the stride of
the trie. A k-bit trie can speed up the search perfor-
mance by inspecting not just one bit but k bits at a
time in an IP lookup operation. The stride size can
be varied in any trie nodes at different levels. There-
fore, if all nodes at the same level have the same
stride size, it is considered as a fixed stride; other-
wise, it is a variable stride.

Gupta et al. [6] proposed a two-level multibit trie
with fixed strides such as hierarchical 24-8 and 16-16
tries. Using the same expansion technique, hierar-
chical 16-8-8 or 8-8-8-8 tries can be constructed.
Larger strides result in faster searches, but the mem-
ory requirement for these is high, and the update
process is slow because many entries need to be
modified.

In another study [12], authors converted the pre-
fix search problem to a range problem since a prefix
is a special case of range. The prefixes are encoded
by their start and end addresses, which are also
called their endpoints. These endpoints are sorted
and stored in a sequential array. Additional infor-
mation such as ‘‘>’’ and ‘‘=’’ ports are employed
to make the binary search on the sequential
array work. The primary idea of the binary range
search is to precompute the port numbers when
the target IP is equal to one of the endpoints or is
located between two consecutive endpoints. Wal-
dvogel et al. [25] proposed a scheme (denoted by
BS-Length) that performs a binary search on hash
tables organized by prefix length. Both schemes in
[12,25] need precomputation to obtain fast lookup
performance.

2.2. Schemes for optimizing memory requirement

The small forwarding table (SFT) scheme [5]
used a compressed version of 16-8-8 trie to reduce
memory consumption. Nilsson and Karlsson [16]
proposed a scheme called Level-Compressed (LC)
trie which recursively transforms binary tries with
prefixes into multibit tries. In LC trie, fill factor is
used to determine if a level can be compressed,
and the indices of the pre-allocated array are used
as the pointers for linking nodes of different levels.
Huang et al. [7] proposed a compressed 16-x lookup
(C-16-x) scheme based on the run-length encoding
technique. In another study [3], a hashing technique
is proposed to reduce the memory size for the 8-8-8-
8 tries. In [21], authors proposed a compression
technique to compact the endpoints of the prefixes,
and they used shared pointers to reduce the memory
requirement.

2.3. Schemes for optimizing update

Sahni et al. proposed many dynamic IP lookup
schemes in order to achieve the update complexity
of O(logN) for a routing table of N prefixes. The
binary tree on the binary tree scheme (PBOB)
[13], the priority search tree scheme (PST) [14],
and the collection of red–black tree schemes
(CRBT) [19] are also studied in this paper. Their
algorithms are basically based on balanced trees
such as a segment tree, interval tree, and priority
search tree.

2.4. Discussions

The balanced tree-based algorithms and 1-bit
trie-based algorithms, such as the binary trie, use
pointers to implement the desired data structures.
Searches have to follow pointers to traverse the
tree and thus involve expensive memory refer-
ences. In addition, the primary memory of the
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trie or balanced tree is used for storing pointers
and other auxiliary information for speeding up
the search and update processes. In general, the
balanced tree and trie-based schemes have a high
memory requirement. They also have a very
good update performance but only a fair search
speed.

The compression-based schemes mostly use
arrays to implement the desired data structures.
For example, the LC trie [16] and the SFT scheme
[5] use arrays to implement the desired data struc-
ture, and thus the update process cannot be done
without reconstructing the whole data structure.
In general, the schemes using array implementation
result in a faster search speed, and the memory
requirement is low. However, the update speed is
very slow because a lot of precomputations are
needed.

Among all the existing algorithms, only the bin-
ary range search [12] can store the lookup data
structure in a sequential array without other auxil-
iary data structures. Thus, its memory consumption
is fair, and the search speed is fast. Similar to
compression-based schemes, the update speed is
very slow because precomputations such as shifting
array elements for allocating spaces for new entries
are needed.

In this paper, we will propose a new encoding
format to store prefixes, which is simpler than the
method proposed by Yazdani and Min [23]. Based
on the new encoding format, prefixes can be com-
pared and sorted easily. Auxiliary prefixes are gen-
erated in order to allow the prefixes to be stored
in the sequential array, and thus the naı̈ve binary
search can be applied to find the LPM. Since the
proposed scheme uses array implementation that
results in a slow update process, we improve the
update speed by using a 16-bit segmentation table
as used in other studies [4–7,16]. The 16-bit segmen-
tation table allows the search to be performed on
the prefixes belonging to only one segment. The
searches for IP addresses belonging to other seg-
ments are not affected by the ongoing update
process.

3. Proposed data structure

Below are the notations and terminology used in
this study.

bn�1. . .b0/l/p: the length format of prefixes. It rep-
resents a prefix of length l associated with a next
port number p in the n-bit address space. In IPv4,
notation bn�1. . .b0/l or d3.d2.d1.d0/l will be used
when no confusion is incurred.

bn�1. . .b0/mn�1. . .m0/p: the mask format of pre-
fixes. It is similar to the length format except that
n-bit mask mn�1. . .m0 is used. For the latter, there
exists an index i for n � 1 P i P 0 such that
mj = 1 for all j P I, and mj = 0 otherwise. Notation
bn�1. . .b0/mn�1. . .m0 or d3.d2.d1.d0/m3.m2.m1.m0
for IPv4 will be used when no confusion is incurred.

bn�1. . . bi* . . . */p: the ternary format of prefixes. It
represents a prefix of length n � i which is associated
with a next port number p and bj = 0 or 1 for
n � 1 P j P i. When we use tn�1. . .t1t0 as the ternary
format of a prefix, where ti = 0, 1, or * (don’t care),
we must follow the rule that if tk is *, then tj must also
be * for all j < k. For simplicity, a single don’t care bit
is used to denote a series of don’t care bits, e.g., prefix
1* denotes 1**** in the 5-bit address space.

Prefix enclosure: A prefix is said to be enclosed or
covered by another prefix if the address space cov-
ered by the former is a subset of that covered by
the latter. We use B � A or A � B to represent that
prefix B encloses prefix A, where � or � is the enclo-
sure operator.

Disjoint prefixes: Two prefixes are said to be dis-
joint if none of them is enclosed by the other.

It is known that the binary search works only for
the sorted lists. Therefore, we must have a mecha-
nism to compare prefixes. Comparing prefixes is
not easy because the lengths of the prefixes may
vary. In this section, we will first propose a system-
atic method to compare prefixes of various lengths.
Also notice that a straightforward application of the
binary search on a sorted list of prefixes may not
work because the binary search scheme may direct
the search to the places that are far from the original
LPM corresponding to the target IP. To solve the
problem, we will insert additional prefixes called
auxiliary prefixes at some points in the sorted list.
These points are the eventual places toward which
the binary search moves. These auxiliary prefixes
inherit the same routing information of the original
LPM. Although the search may go away from the
original LPM, the match will be found on one of
these auxiliary prefixes.

Now, we first introduce our definition of compar-
ing two prefixes in order to sort a list of prefixes of
various lengths based on the ternary format.

Definition 1 (Prefix comparison). The inequality
0 < * < 1 is used to compare two prefixes in the
ternary format.
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Fig. 1 shows a list of 15 sorted prefixes in the 8-
bit address space by the above prefix comparison
rule. If the same table is illustrated in the form of
a binary trie, we can see that the relative positions
of these sorted prefixes actually agree with the pro-
jected positions of the prefixes on the horizontal
line. Let us study an example to see why performing
a binary search on the list of sorted prefixes may
encounter a failure. Consider the binary search
operation for address Dst = 01011000 in Fig. 1.
The first prefix to be compared is the middle one
which is B = 01*. Although B matches Dst, we can-
not ensure that B is the LPM. Prefix B is temporar-
ily stored, and the search continues. Since Dst is
smaller than B, the search will continue on the list
of GEHLKOF. Now, the middle one L =
01001100 is compared with Dst. Since Dst is larger
than L, the list of KOF is searched. The search ends
after prefixes O and K are checked. Since prefix K
does not match the address Dst, only prefix B
appears as the final result. Obviously, this result is
incorrect since the LPM should be F = 01011*.
Moreover, prefix F did not get any chance to be
examined in the process of the binary search.

By carefully analyzing the binary search on the
sorted prefixes, we found that the main cause of
the failure comes from the enclosure property
between prefixes of different lengths [23,9]. In the
above example, prefix O is enclosed by F. The
search failure for address 01011000 is caused by
the absence of a prefix that covers 01011000 and is
also smaller than prefix O.

We did not try to revise the binary search opera-
tion in such a way that the search will end up locat-
ing F as the final match. What we did was to
generate some auxiliary prefixes that inherit the
routing information of the original LPM (e.g., F)
and put them where the binary search operations
can find them.

For example, if we insert an auxiliary prefix
01011000 inheriting F’s routing information, then
NG E H O A DMI CK BFL
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Fig. 1. List of sorted prefixes based on the rule of 0 < * < 1.
the search operation for address 01011000 will be
successful. Therefore, it is feasible to split prefix F
into two parts such that both sides of prefix O are
covered. A simple solution is to remove all the
enclosures by making the binary trie a full tree.1

The full tree expansion and prefix merges. The full
tree expansion splits the enclosure prefixes into
many longer ones and disjoints all the resulting pre-
fixes. The sequential list of the sorted prefixes is then
obtained by an inorder traversal of the full tree.
Many auxiliary prefixes may inherit the same rout-
ing information of a common enclosure prefix.
Some of these auxiliary prefixes from the same
enclosure prefix may also be consecutively located.
Therefore, these prefixes can be merged into one
without affecting the correctness of the binary
search because they inherit the same routing infor-
mation. The merge operation is defined as follows.

Definition 2 (Prefix merge). The prefix obtained by
merging a set of consecutive prefixes is the longest
common ancestor of these consecutive prefixes in
the binary trie.

Fig. 2 shows the full tree constructed by expand-
ing the binary trie. The gray and black circle nodes
represent the original prefixes in Fig. 1. The triangle
nodes are the auxiliary prefixes expanded by the
gray nodes. The full tree after the merge operations
is shown in Fig. 3. Auxiliary prefixes B4 and B5 are
merged into B7; B2 and B3 are merged into B6; F1
and F2 are merged back into F; A1 and A2 are
merged back into A, and D1 and D2 are merged
back into D. Keeping prefix E1 is equivalent to
1 We follow the traditional notations used in most data
structure and algorithms books in which a node either has no
child or has two children in the full binary tree instead of the
complete binary tree.
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keeping prefix E. We suggest keeping the original
prefixes. Therefore, prefixes E, K, B, and I are
retained.

The merge operations may reintroduce the enclo-
sure property in the sorted list. Since only the aux-
iliary prefixes generated from the same original
prefix may be merged, this time, the enclosure prop-
erty does not cause any search failure. This is
because the enclosure property that the final two
prefixes examined in the last stage of the binary
search may be the LPM. Therefore, when the target
IP is located between two prefixes, the LPM will be
the longer prefix if both prefixes match the target IP.

The following two lemmas illustrate how the
merge operations can reduce the number of auxil-
iary prefixes and the relative position of the longest
common ancestor prefix of two disjoint prefixes.

Lemma 1. For a prefix that is enclosed by its

immediate parent prefix, one auxiliary prefix, at

most, which is inherited from the parent prefix may be

generated based on the full tree expansion with
merging.

Proof. Assume a prefix y covers k consecutive origi-
nal prefixes x1 to xk. If there is a region on the left
side of x1, a region between xi and xi+1 (for i = 1
to k � 1), or a region on the right side of xk that
is covered by y, then the full tree expansion must
generate many auxiliary prefixes from y. These aux-
iliary prefixes are consecutive and thus can then be
merged into their longest common ancestor. At
most, there exists k + 1 such regions, and thus at
most, k + 1 auxiliary prefixes may be generated
from y. However, one of the auxiliary prefixes is
the same as y. As a result, k auxiliary prefixes from
y are newly generated at most. We can conclude
that one prefix covered by its parent prefix contrib-
utes at most one auxiliary prefix based on the full
tree expansion with merging. Thus, the lemma
follows. h

The following lemma shows the relative positions
between two disjoint prefixes and their longest com-
mon ancestor.

Lemma 2. The longest common ancestor of two

disjoint prefixes must be located between them in the

sorted list.

Proof. Let two disjoint prefixes be A = bn�1. . .
bkak�1. . . ai*. . .*, and C = bn�1. . . bkck�1. . . cj*. . .*.
Since they are disjoint, we assume ak�1 = 0, and
ck�1 = 1. The longest common ancestor of these
two prefixes must be B = bn�1. . .bk*. . .*. Based on
Definition 1, we have A < B < C. Thus, the lemma
follows. h

The merge operation involving many prefixes
may be time consuming. The following lemma
shows an efficient operation in which merging the
leftmost and rightmost prefixes is sufficient to find
the longest common ancestor of a list of consecutive
prefixes.

Lemma 3. The longest common ancestor of a list of

consecutive prefixes is the same as that of the leftmost

and the rightmost prefixes in the list.

Proof. Consider a list of three consecutive prefixes l,
m, and r that represents the prefixes on the left, in
the middle, and on the right of the list. We first
show by contradiction that the longest common
ancestor of prefixes l and m is not disjoint from that
of prefixes l and r. Let prefixes lm and lr be the
longest common ancestors of prefixes l and m and
prefixes l and r, respectively. Assume prefixes lm
and lr are disjoint. Thus, any prefix enclosed by
lm must also be disjoint from a prefix enclosed by
prefix lr. This implies that the prefix l is disjoint
from itself. Therefore, the assumption is contradic-
tory. We can conclude that one of the prefixes lm
and lr is enclosed by the other. If prefix lm is the
same as prefix lr, then we are done. Therefore, we
can only consider the case where lm 5 lr.

Next, we show that prefix lm is enclosed by lr by
using again the contradictory proof. Assume that
prefix lr is enclosed by prefix lm. Let p be any prefix
p enclosed by lr. From Definition 1, we know that
p < lm or lm < p. Consider the case where lm < p.
We can let p = l because l is one of the prefixes
enclosed by lr. Therefore, we have m < lm < l. In
short, m < l contradicts the original assumption.
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Now, assume p < lm. We can let p = r and get
r < lm because r is one of the prefixes enclosed by lr.
Since l < lr < r, we have the condition of
l < lr < r < lm < m that in turn contradicts the
condition of r < m. Therefore, the assumption that
prefix lr is enclosed by prefix lm is also contra-
dictory.

We now need to prove that the longest common
ancestor of prefixes m and r must be enclosed by
that of prefixes l and r. The proof is similar to that
of the previous case. Thus, the lemma is proved. h

Obviously, the complexity of a merge operation
is O(n) in the n-bit address space. The overall merge
operation can be done by scanning the prefixes one
by one from the smallest prefix in order to group
consecutive prefixes containing the same route
information. Thus, the overall complexity is O(n ·
N). Now, we prove that the number of auxiliary pre-
fixes generated by the proposed method is less than
N for the routing table of N original prefixes.
// List stores the resulting sequential list of prefix
// EncStack denotes enclosure stack which stores
// currently processed and APQueue denotes auxi
inorder_traversal_build_list(TrieNode node)
Begin
01 If node is Original_Prefix Then
02 If APQueue is not empty Then
03 Merge the auxiliary prefixes in AP
04 If the parent of MP is not equal to
05 Add MP in List and reset APQ
06 If the node is a leaf trie node Then
07 Add the node’s prefix in List and r
08 Push node’s prefix in EncStack

09 If the node’s left pointer is not null Then
10 Recursively call inorder_traversal_bui
11 Else { /* generate an auxiliary prefix */
12 If EncStack is not empty and node is no
13 Create the node’s left child as the

14 If node is Original_Prefix Then
15 If APQueue is not empty Then
16 Merge the auxiliary prefixes in AP
17 If the parent of MP is not equal to
18 Add MP in List and reset APQ
19 Add the node’s prefix in List

20 If node’s right pointer is not null Then
21 Recursively call inorder_traversal_bui
22 Else { /* generate an auxiliary prefix */
23 If EncStack is not empty and node is no
24 Create the node’s left child as the

25 If node is Original_Prefix Then
26 Pop an entry from EncStack
27 If APQueue is not empty Then
28 Merge the auxiliary prefixes in AP
29 Add MP in List and reset APQueu
End

Fig. 4. Building the sorted list for the
Theorem 1. The total number of prefixes in the

proposed sorted prefixes is less than 2N, where N

is the original number of prefixes in the routing

table.

Proof. In the set of N prefixes, there are at most
N � 1 prefixes that can be covered by a parent pre-
fix. Therefore, based on Lemma 1, N � 1 auxiliary
prefixes can be generated at most. In this case, the
theorem is proved. h

Building and updating the sequential list. Now, we
formally implement the building process of the pro-
posed binary prefix search. Instead of performing
the inorder traversal in the binary trie and then
merging, we speed up the building process by
performing the merging process and the inorder
traversal in the binary trie at the same time. Fig. 4
shows the pseudo-code of the implementation.
Lines 1–8 and 25–30 demonstrate the merging oper-
ations before and after processing a subtrie, respec-
es by the full tree expansion with merges
the prefixes that covers the prefix
liary prefix queue

Queue into prefix MP
the previously added prefix Then
ueue

eset APQueue

ld_list using node’s left pointer

t Original_Prefix Then
auxiliary prefix and Store it in APQueue

Queue into prefix MP
the node’s prefix Then
ueue

ld_list using node’s right pointer

t Original_Prefix Then
auxiliary prefix and Store it in APQueue

Queue into prefix MP
e

proposed binary prefix search.
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tively. Recursive calls into the left and right subtries,
and the creation of auxiliary prefixes are performed
in lines 9–13 and 20–24. It is possible that the aux-
iliary prefix after merging inherits the same routing
information as its left or right neighboring prefix in
the list. In this case, this merged prefix is not
inserted into the sorted list as shown in lines 2–5
and 15–18.

When inserting or deleting a prefix, one might
hope that it is possible to develop an update algo-
rithm of worst case complexity O(logN) as the
balanced tree-based schemes proposed in [13,14,
19]. However, such update algorithms is not possi-
ble without the pointer implementation, which vio-
lates our intention of using array implementation
in order to obtain a very fast search process. There-
fore, there does not appear to be any update tech-
nique that uses array implementation that is faster
than just building the sorted prefixes from scratch.
In order to reduce the impact of the update process
on the overall router performance, we propose to
use a 16-bit segmentation table.

Searching the sequential list. Since each prefix in
the sorted list is not a single address but a range
of addresses, the binary search applied on the sorted
prefixes must be modified. The formal implementa-
tion of the proposed binary prefix search (BPS) is
shown in Fig. 5. The lookup process starts by call-
ing Proposed_BPS(List, 0,max � 1, target_ip). For
example, in Fig. 3, when the target IP is 01011000,
the final two prefixes are B6 and F3 after four suc-
cessive probes on prefixes F, L, F3, and B6. After
matching B6 and F3, prefix F3 is determined to be
the final LPM because F3 is longer than B6.
// List is an array of sorted prefixes after full tree
// L and R are the left and right indices of List arra
// ⊇ is the enclosure operator
Proposed_BPS(Prefix List[], Index L, Index R,
Begin
01 If (L+1 = R) Then
02 If (length(List[L]) ≥ length(List[R])) Th
03 If (List[L].addr ⊇ IP) Then Output
04 If (List[R].addr ⊇ IP) Then Output
05 Else
06 If (List[R].addr ⊇ IP) Then Output
07 If (List[L].addr ⊇ IP) Then Output
08 Output defulat port;
09 M = floor( (L+R)/2);
10 If (List[M].addr = IP) Then Output port corr
11 Else If (List[M] < IP) Then recursively call
12 Else recursively call Proposed_BPS(List, L,
End

Fig. 5. Algorithm for the proposed binary prefi
4. The prefix representation

We have proposed a novel scheme to sort the pre-
fixes on which a binary search can be applied to find
the LPM. Recall that the two most important oper-
ations in IP lookups are comparing two prefixes of
various lengths and matching a prefix with a
32-bit IP address. We have previously defined the
comparison of two prefixes in Definition 1. What
we mean by match is to determine if a target IP
belongs to the subnetwork represented by the prefix.

The comparison and match operations involve
ternary operations because 0, 1, and * (the don’t
care bit) are checked. Using the binary ALU
instructions provided by current processors, there
is no efficient way to perform the ternary opera-
tions. In this section, we first propose a 33-bit
binary representation to encode the prefixes of any
length in the context of IPv4. The proposed repre-
sentation can be straightforwardly extended to
IPv6. Based on the 33-bit representation, the opera-
tions of comparing two prefixes and matching a pre-
fix with the 32-bit target IP can be performed easily
using the 32-bit wide instructions of the current
processors. However, the efficiency of the compari-
son and matching operations is brought down by
the fact that a prefix encoded by the 33-bit represen-
tation still needs two 32-bit storages. Therefore, we
propose an optimized 32-bit representation to rem-
edy this drawback.

There are two commonly used binary representa-
tions for the prefixes of different lengths in IPv4,
namely, the mask format and the length format.
Compared to the mask format, the length format
expansion and merge.
y, and IP is the target IP address.

Address IP)

en
port corresponding to prefix List[L];
port corresponding to prefix List[R];

port corresponding to prefix List[R];
port corresponding to prefix List[L];

esponding to prefix List[M];
Proposed_BPS(List, M, R, IP);
M, IP);

x search on a list with enclosure property.
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has the advantage in that only 5 bits are required for
the length in IPv4 instead of a 32-bit netmask.
Matching can be done easily by the following steps.
The IP part of the prefix is first XORed with the tar-
get IP address. Then the result is ANDed with the
netmask (or right shifted 32 – length bits) if the
mask (or length) format is used. If the final result
is zero, then the match is found.

However, no matter which format is used, com-
paring two prefixes is not easy. Consider two pre-
fixes m1.m2.m3.m4/mask1 and n1.n2.n3.n4/mask2
with lengths len1 and len2, respectively. Assuming
mask1 6 mask2, we perform two AND operations,
m1.m2.m3.m4&mask1 and n1.n2.n3.n4&mask1. If
these two ANDed results can allow us to determine
which of these two prefixes is larger, then we are
done. The difficulty arises in the situation in which
m1.m2.m3.m4&mask1 equals n1.n2.n3.n4&mask1.
We must perform an additional check to see if the
(31-len1)th bit of n1.n2.n3.n4 is 0 or 1. If the (31-
len1)th bit of n1.n2.n3.n4 is 0, then m1.m2.m3.m4/
mask1 is larger than n1.n2.n3.n4/mask2. Otherwise,
m1.m2.m3.m4/mask1 is smaller than n1.n2.n3.n4/
mask2. All these operations are complex to imple-
ment. We will introduce our proposed representa-
tion and demonstrate the efficient implementation
of prefix comparisons and matching using 32-bit
CPU instructions as follows.

The 33-bit prefix representation: A simple 4-bit
case is studied first. There are 31 different prefixes
of various lengths in a 4-bit address space. Using
binary representation to identify 31 different items,
we need a 5-bit address space. There are many ways
to map these 31 prefixes to the 5-bit address space.
We select a mapping that is consistent with Defini-
tion 1. This mapping preserves the relative positions
of the prefixes in the binary trie projected on the
horizontal line. The address 00000 is unused. The
binary representation for prefixes of various lengths
can be easily extended to the IPv4’s 32-bit or IPv6’s
128-bit address space. We formally define the binary
representation of a prefix in an n-bit address space
as follows.

Definition 3 (Definition of (n + 1)-bit prefix repre-

sentation in the n-bit address space). For a prefix of
length i, bn�1. . .bn�i*, where bj = 0 or 1 for
n � 1 P j P n � i, its binary representation is
bn�1. . .bn�i10. . .0 with n � i trailing zeros.

Consider two prefixes 01* and 01010* in an 8-bit
address space. From Definition 1, we have
01* > 01010*. Based on Definition 3, we represent
01* and 01010* as 011000000 and 010101000,
respectively. Thus, it is easy to use a 9-bit binary
comparison operation to determine that 01* is lar-
ger than 01010*. However, for the 32-bit address
space, a 33-bit binary comparison operation is
required. It means two 32-bit binary comparison
operations may be needed in the worst case since
only 32-bit arithmetic and logic operations are
available in current 32-bit processors. It also means
that two 32-bit memory reads are needed if the size
of registers is 32 bits. In addition, two 32-bit words
are needed to store a prefix using 33-bit representa-
tion. To solve the above problems, an optimized 32-
bit representation is proposed.

The 32-bit prefix representation. Based on the 33-
bit prefix representation, 33 bit-by-bit comparisons
or two 32-bit comparisons can fully determine the
order of the prefixes. If there is no prefix of length
32, we can use only 32 bits by ignoring the least sig-
nificant bit that must always be zero. Notice that the
smallest subnet in classless inter-domain routing
(CIDR) is at least 2 bits long that contains one net-
work address, one broadcast address, and two
usable IP addresses. Thus, assuming there is no pre-
fix of lengths, 31 and 32 are reasonable. Notice that
the routing cache design using CPU caches [4] make
the same assumption. However, by investigating the
routing tables of current routers available on the
Internet, there is a small number of prefixes whose
lengths are 31 or 32. The prefixes of length 32 may
come from the direct connections between the rou-
ter and the computers or devices. The prefixes of
length 31 may be configured for testing purposes
or result from configuration errors in one router,
and are inadvertently passed into the inter-domain
routers [8]. Therefore, unless the prefixes of lengths
31 and 32 are filtered out, distinguishing two pre-
fixes by using only 32 bits is the main problem to
be solved.

The ambiguity caused by removing the least sig-
nificant bit from the 33-bit representation will be
solved by a special layout design in the sorted list
of prefixes. For simplicity, an 8-bit address space
is used to illustrate our idea. Consider two prefixes
P1 = 01001100/port1 and P2 = 01001*/port2. The
9-bit prefix representations of P1 and P2 are
010011001 and 010011000, respectively. The first
8 bits cannot distinguish P1 from P2. In general,
when two prefixes have the same first 8 bits, one
of them must be of length 8, and the other may be
of any length except 8. We call one of these two pre-
fixes as the buddy prefix of the other. Any prefix may
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Fig. 7. The list of sorted prefixes after the prefix conversions.
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have its buddy prefix coexisting in the sorted list. In
order to make the binary search on the sorted list of
8-bit prefixes correct, every time a prefix is matched
against the target IP, we need to do a further check
if its buddy prefix also exists on its left or right side.
This additional check significantly slows down the
search process.

We solve this problem by means of the following
rule: only the prefix of length n � 1 is allowed to
have a buddy prefix of length n coexisting in n-bit
address space. This rule is achieved by the following
conversion technique. Based on this technique, we
only need to check if a buddy prefix coexists when
the prefix of length n or n � 1 is examined. This con-
version technique may generate at most the same
number of additional prefixes as that of the original
prefixes of length n.

Definition 4 (Definition of prefix conversion in the

n-bit address space). (a) If a prefix of length n,
bn�1. . .b10/n/p1 exists, it is converted to bn�1. . .b10/
n � 1/p1, and prefix bn�1. . .b11/n/p2 created if it does
not exist in the list, where p2 is the port of the prefix
that covers bn�1bn�2. . .b11. (b) If prefix bn�1. . .b11/
n/p1 exists in the list, then bn�1. . .b1b0/n � 1/p2 is
created if it does not exist in the list, where p2 is the
port of the prefix that covers bn�1bn�2. . .b10. (c) If
only bn�1. . .b10/n � 1/p1 exists in the list, do
nothing.

Fig. 6 shows how the prefix conversion opera-
tions work. Based on the above definition, prefix
bn�1. . .b10/n/p1 is not allowed to occur in the list
since its buddy prefix with a length shorter than
n � 1 may also exist. Fig. 6(a) shows that when
A = bn�1. . .b10/n/p1 exists, it is first converted to
bn�1. . .b10/n � 1/p1. If prefix bn�1. . .b10/n � 1/p2

already exists, it will be converted to B =
bn�1. . .b11/n/p2. Otherwise, prefix B = bn�1. . .b11/
n/p2 will be created, where p2 is the port number
of the longest prefix that covers B. Fig. 6(b) shows
that when A = bn�1. . .b11/n/p1 exists, prefix
B = bn�1. . .b10/n � 1/p2 is created when B does
not exist, and p2 is the port number of the longest
prefix that covers B. Fig. 6(c) shows that if only
A

A

Level 32

Level 31

B

(a)
A

(b

Level 32

Level 31

Fig. 6. Illustrations of different ca
A = bn�1. . .b10/n � 1/p1 exists, no conversion is
needed.

If both bn�1. . .b10/n � 1/p1 and bn�1. . .b11/n/p2

exist after conversion, the latter is stored as 0. . .0/
p2 if the 32-bit format is used. When 0. . .0/p2 is
found in the search, we know that a prefix and its
buddy prefix must coexist in the list. However, when
the search encounters bn�1. . .b11/p1 which is of
length n � 1, an additional operation must be per-
formed to check if its buddy prefix (stored as
0. . .0/p2) coexist in the list. If only bn�1. . .b10/
n � 1/p1 exists, it must be stored as bn�1. . .b1/1/p1

instead of 0. . .0/p1. Fig. 7 illustrates the full tree
after conversions from Fig. 3. For example, prefixes
L and K are converted to L0 and K1. Thus, when
we perform a comparison with K1 which is stored
as 0. . .0, we only know K1’s length that is 8 but
not its value. The value of K1 is known only after
examining L0.

Now we consider how to match a prefix encoded
by a 32-bit representation against an IP using the
32-bit instructions of the current processors. The
matching process can be done by the following
steps. First, the position of the least significant set
bit in the 32-bit prefix must be computed to deter-
mine the length of the prefix. If the least significant
A

B

)

A A

(c)

Level 32

Level 31

ses in prefix conversion rule.
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set bit is on bit 0, then the length of the prefix is
n � 1, and thus we need to check if its buddy prefix
of length n also exists. The computation time for
this operation seems dependent on the position of
the least significant set bit. Fortunately, there exists
an instruction called bit scan forward (BSF) in the
Intel processor family [10] starting from Intel
80386 which can perform the required task. Second,
let i be the position of the bit computed by BSF on
the 32-bit prefix. Thus, we compute (P XOR
IP)� (i + 1), where ‘‘�’’ denotes the right shift
operation. If it is zero, then prefix P matches IP.

The lookup process using the 32-bit representa-
tion is similar to the algorithm shown in Fig. 5.
The only extra step required is that when the prefix
P with address zero or the prefix of length n � 1 is
examined, the existence of its buddy prefix must
be checked. Since the number of prefixes with length
32 is small and is equal to the number of prefixes
with address zero in the list, the impact on the
lookup performance will be negligible.

5. m-Way search tree using cache lines

Modern general-purpose CPUs support various
kinds of caches for speeding up the data processing.
Most modern CPUs have the cache line size of 32,
64, or 128 bytes. The primary idea of using cache
lines for searching is to reduce the number of
searches in the memory by performing the searches
in cache lines. Therefore, putting as much search
information in a cache line is the key factor to
design efficient m-way search tree algorithms.

We use a 16-bit segmentation table because the
remaining 16 bits from the prefixes are byte aligned
and can be efficiently fit to cache lines of 32 or
64 bytes. Also, the update process only causes one
segment to be reconstructed. The basic element in
the sequential list takes 3 bytes to store the remain-
ing 16-bit of a prefix and its associated 8-bit port
number, which is denoted as a 2-tuple (prefix, port).
We develop two basic encoding schemes to encode
the prefixes or their corresponding port numbers in
a memory block. The first scheme encodes 10 3-byte
2-tuples in a 32-byte cache block where 2 bytes are
left unused. The second scheme encodes 16 16-bit
prefixes in a 32-byte cache block. Based on these
two encoding schemes, different hierarchical struc-
tures are proposed as the m-way prefix search trees.

The hierarchical structure of prefixes is designed
in a block-by-block fashion, where a block size is
the same as that of a cache line. The base of the
block array is assumed to be known globally. Thus,
instead of the global address, the indices of the
memory blocks are used to access the prefixes stored
in the list. We use the binary search inside the cache
line. The entry in the 16-bit segmentation table is of
size 32 bits, and it contains a Format field, a
Number field recording the number of prefixes in
the segment, an Index field or prefix field, and a Port
field. The data structures of the different entry for-
mats in the 16-bit segmentation table will be
described in detail when necessary.

We first consider two special cases when there is
zero or one prefix in the segment. If there is no pre-
fix of length longer than 16 in the segment, the
lookup operation should return the port number
belonging to that segment or the global default port
number. All the fields in the corresponding entry of
the segmentation table are set to zero except for the
Port field. If there is only one prefix of length longer
than 16 in the segment, the proposed 16-bit repre-
sentation for the prefix and the corresponding port
number are stored in the entry of the 16-bit segmen-
tation table. These two cases are categorized as for-
mat 0 segment.

If there are k prefixes for 2 6 k 6 10 in a seg-
ment, then these k prefixes can be stored in a mem-
ory block of size 32 bytes. The data structures of
various segments are illustrated in Fig. 8. The
Format field (3 bits) stores the format number which
is 1. The Number field (5 bits) stores the value k. The
Index field (16 bits) stores the index of the memory
block for this segment. The Port field (8 bits) indi-
cates the local default port in this segment. Storing
default port number avoids generating too many
auxiliary prefixes. We can see that two memory
accesses are required to obtain the output port num-
ber: one for accessing the segmentation table and
another for accessing the memory block.

If there are more than 10 prefixes in the segment,
then more than two memory accesses are required.
For a segment containing 11–32 prefixes as shown
in Fig. 8(b), exactly 3 blocks are needed. The binary
search inside these three blocks takes at most two
memory accesses. Overall, the worst case search
time is three memory accesses. The data structure
of the format 2 entry is the same as that of the for-
mat 1. The binary search on the prefixes stored in
memory blocks can be applied directly. If there
are k prefixes for 33 6 k 6 120 in a segment (format
3), a 2-level 11-way search tree is constructed as
shown in Fig. 8(c). This 2-level 11-way search tree
is physically laid out as a sequential list. The first



(a) format 1: Structure of the segment containing 2 to 10 prefixes.

(b) format 2: Structure of the segment containing 11 to 32 prefixes.

(c) format 3 : A 2-level 11-way prefix segment containing 33 to 120 prefixes.

(d) format 4: A 2-level 17-way prefix segment containing 121 to 186 prefixes.
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Fig. 8. Structures of the segments.
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block in the sequential list is the root block that is
duplicated in the figure for illustration purpose.
The root block stores the prefixes whose index is
multiples of 11. Since the 32-bit entry of the segmen-
tation table is limited, the default port number is
moved to the unused 2-byte area.

To pact more prefixes in a block, another hierar-
chical structure (format 4) based on the second
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encoding scheme is proposed as shown in Fig. 8(d).
At most, 186 keys can be stored in a two-level 17-
way search tree. The root block encodes 16 keys
(16-bit representation of prefixes) without the asso-
ciated port numbers. The port numbers correspond-
ing to the prefixes in the root block are stored in the
unused 2-byte area in the second level. In addition,
we also distribute the default port number over the
unused area of every second level block. In
Fig. 8(d), the entries denoted by indices 11P, . . . ,
176P are the original unused 2-byte areas that now
store the port numbers of the 11th, . . . , 176th prefix
in the list, respectively, and the default segment port
number. Since the default port is not stored in the
root block, searches in a 2-level 17-way search tree
always take three memory accesses.

The hierarchical structures based on the pro-
posed encoding schemes can be extended to more
than 2 levels. As we know, the cache line size can
be 32, 64, or 128 bytes, and the results are shown
in Table 1. We briefly describe formats 5, 6, and 7
by using the block of size 32 bytes as follows. In for-
mat 5, the blocks in all the levels contain 10 prefixes
and their associated port numbers. In format 6, only
the root block which records 16 prefixes with the
associated port numbers are stored in the second-
level blocks. In format 7, the root block and the sec-
ond-level blocks which contain 16 prefixes without
associated port numbers are distributed over the
third-level blocks accordingly.

Default port of a segment. We have shown that
the delete and insert processes have the worst-case
time complexity of O(N) for a list of N prefixes.
Using the 16-bit segmentation table allows us to
reduce the worst-case update complexity to O(Nseg),
where Nseg, much less than N, is the maximum num-
ber of prefixes among all 65,536 segments. The pre-
Table 1
The numbers of prefixes in different segment formats

Format Tree level n = Number of entries in the segment

CLS 32

0 0 0 0
0 0 1 1
1 1 2 – k1 2–10
2 2 k1 + 1–CLS 11–32
3 2 CLS + 1 – (k1 + 1)2 � 1 33–120
4 2 (k1 + 1)2 – (k2 + 1)(k1 + 1) � 1 121–186
5 3 (k2 + 1)(k1 + 1) – (k1 + 1)3 � 1 187–1330
6 3 (k1 + 1)3 – (k2 + 1)(k1 + 1)2 � 1 1331–2057

CLS = cache line size in bytes, k1 = bCLS/3c, k2 = bCLS/2c.
n/a = Not applicable, bxc = floor of value x.
fixes of length less than or equal to 16 are not used
to generate auxiliary prefixes. The total number of
the auxiliary prefixes is reduced. Thus, the search
and update performance is improved.

Consider an example in which there are 11 origi-
nal prefixes in one segment. Assume that one prefix
encloses the other 10 disjoint prefixes. If we use the
method proposed in Section 3 to build the sequen-
tial list, 10 auxiliary prefixes at most may be gener-
ated, and the total number of prefixes will be 21.
Thus, the worst-case number of memory accesses
will be three (one to the segmentation table and
two to the list), assuming format 2. If we make
the port of the enclosure prefix the default port,
no auxiliary prefix is generated. Consider the 32-
byte block and format 1. The port and the corre-
sponding enclosure prefix can be stored in the Port
field of the segmentation table entry and the unused
2-byte area of the root block. The worst-case
number of memory accesses will be two (one to
the segmentation table and one to the list). This
technique can be applied to other formats.

For 32-byte cache lines, the maximum degree of
the tree in the proposed multiway schemes is 11 or
17 depending on whether or not the port numbers
are stored along with the prefixes in the memory
blocks. The maximum degree of the tree becomes
22 or 33 and 43 or 65 for the cache lines of 64-byte
and 128-byte, respectively. This is a big improve-
ment over the multiway range search and multiway
range tree. Notice that the maximum degree of the
multiway range tree [22] is smaller than that of the
multiway range search because each cache line
needs to record the heads of the equal list and the
span list. Please refer to the definitions of equal
and span lists in [22]. Therefore, the multiway range
tree is deeper than the tree based on the multiway
Block index/16-bit prefix Port

64

0 0 Default port #
1 Prefix Port #
2–21 Index Default port #
22 � 64 Index Default port #
65–483 Index n/a
484–725 Index n/a
726–10,647 Index n/a
10,648–15,971 Index n/a
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range search. Although the child-sibling linear array
is used in [22] to reduce the overhead of storing child
pointers, the memory usage must also be increased.

6. Performance evaluation

In this section, we first use a real large routing
table to analyze the impact of the auxiliary prefixes
generated from the proposed scheme, and then com-
pare the result with the binary range search [12].
Second, we conduct trace-driven simulations to
evaluate the lookup times and the sizes of the mem-
ory required for the proposed schemes, and com-
pare them with other existing lookup schemes.
Our experiments are performed on a Linux Redhat
platform with a 2.4-GHz Pentium IV processor con-
taining 8 KB L1 and 256 KB L2 caches of 64-byte
cache lines. Since it is almost impossible to obtain
the actual IP traffic being routed through the router
at the time when the routing table is logged, we use
a simulated IP traffic, which is described as follows.
Assume the routing entries in the routing table
follow the length format. The simulated traffic is
constructed by first removing the length and port
of the routing entries, and then performing a ran-
dom permutation. The simulated traffic assumes
that every prefix in the routing table has the same
probability of being accessed. The same method is
also used in [16,17]. The detailed simulation designs
can be referred to [3].

We have proved in Theorem 1 that the number of
prefixes in the sorted list after merging operations is
less than 2N, where N is the number of original pre-
fixes in the routing table. Therefore, the worst-case
complexities of the proposed binary search scheme
in the lookup time, update time, and memory usage
are similar to those of the range search schemes [12].
However, there are subtle differences in terms of
memory requirements and lookup times between
the proposed prefix searches and the range searches
which are described as follows. Consider a routing
table of N prefixes. The binary range search in fact
needs a sequential array of almost 2N elements,
each of which uses 6 bytes to store the 32-bit end-
Table 2
The numbers of endpoints and prefixes needed in the range search and

Sixteen-bit segmentation table Original Range search Prefix s

Total endpoints Total p

Without 120,629 232,887 199,751
With 120,629 217,146 133,160
point address and two 1-byte port numbers (‘‘>’’
and ‘‘=’’ ports). For Oix-120k table containing
N = 120,629 original prefixes, the binary range
search requires 232,887 endpoint addresses, as
shown in Table 2. Without the 16-bit segmentation
table, the full tree scheme and that with the merging
operations need around 1.65N and 1.2N prefixes,
respectively. Notice that each prefix only needs
5 bytes to store the 32-bit prefix and the 1-byte port
number. Thus, from Table 2, the total amount of
memory required for the binary range search, the
proposed full tree scheme, and the proposed scheme
with merging operations can be computed as
1365 KB, 975 KB, and 712 KB, respectively. The
number of auxiliary prefixes decreases from 89,225
to 35,211 when the merge operations are performed.
It accounts for 270 KB memory reduction.

The last row of Table 2 shows the total numbers
of prefixes when a 16-bit segmentation table is
employed. The total numbers of prefixes for the full
tree scheme and that for the merging are 133,160
and 117,968, respectively. The latter is even smaller
than that of the original prefixes. The main reason is
that the original prefixes of length less than or equal
to 16 are embedded into the segmentation table.
However, the 16-bit segmentation table requires
an additional memory of 256 KB.

Table 3 shows the worst-case numbers of mem-
ory accesses, the search time, the update time, and
the amount of memory required for various schemes
using the Oix-120k table. Unless otherwise stated, a
16-bit segmentation denoted by the suffix ‘‘�16’’ is
assumed. The proposed prefix searches are generally
better than most of the existing schemes. The mem-
ory reduction is mostly attributed to the 32-bit pre-
fix representation. Specifically, the proposed prefix
searches outperform the range searches both in
memory consumption and the number of memory
accesses for a lookup operation. The multiway pre-
fix search has the same worst-case number of mem-
ory accesses as C-16-x scheme [7]. However, the C-
16-x scheme consumes more memory. The amounts
of memory required for the proposed binary prefix
searches with or without a 16-bit segmentation table
proposed prefix search for the Oix-120k routing table

earch Prefix search with merge

refixes Auxiliary prefixes Total prefixes Auxiliary prefixes

89,225 145,737 35,211
28,293 117,968 13,101



Table 3
Performance for the routing table of 120,629 prefixes (Oix-120k),
where the proposed multiway and binary prefix searches are
denoted by MPS and BPS, and suffix ‘‘�16’’ denotes the usage of
a16-bit segmentation table

Scheme Worst case #
of memory
references

Search
time (Ts)
in ls

Update
time (Tu)
in ls

Memory
(Mem)
in KB

BTrie-16 17 0.47 0.84 2447
C-16-x [7] 3 0.17 9.89 1147
BS-Length [25] 5 0.35 210 2315
SFT [5] 12 0.21 1454 650
BRS-16 [12] 4 0.28 9.56 1104
MRS-16 [12] 4 0.23 29.3 4695
BPS-16 4 0.16 6.05 601
MPS-16 3 0.17 17.82 954
PBOB-16 [13] 10 0.34 0.97 3550
PST-16 [14] 10 0.44 1.58 7932
CRBT-16 [19] 10 0.65 4.20 19,535
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are even smaller than that of the small forwarding
table scheme [5]. Notice that if the original prefixes
are stored in a linear array, the linear search can be
applied. Obviously, the search and update speeds
will be very slow. However, this arrangement will
have the lowest memory requirement. If we assume
that each original prefix is stored in the length for-
mat (45 bits for a prefix), then the size of the mem-
ory required for the Oix-120k table is 663 KB.

Since the proposed prefix search and the range
search are similar and both use array implementa-
tion, we also obtained the performance results of
other routing table traces in different sizes to have
a complete understanding of their differences. The
results are summarized in Table 4. We can see that
the performance improvement of the proposed pre-
Table 4
Average lookup times in ls and amount of memory in KB required for
segmentation table

Funet-40k [16]
(41,709 prefixes)

Oix-80k [15]
(89,088 prefixe

Binary range 0.126 (525.5 KB) 0.234 (846.9 K
Multiway range 0.148 (1719 KB) 0.219 (3543 KB
Binary prefix 0.123 (395.5 KB) 0.145 (558.5 K

Table 5
Normalized average lookup times in ls and amount of memory in KB f
(BRS) using IPv6 tables

V6table (274) Asmap (593) R

Time ratio (BPS/BRS) 1.12 (0.188/0.168) 1.01 (0.214/0.212) 1.
Memory ratio (BPS/BRS) 0.62 (5.3/8.6) 0.72 (13.68/19.1) 0.
fix searches over the range searches in lookup times
increases as the size of the routing table increases.
For all the simulated routing tables, the binary
and multiway prefix searches consume 25–48%
and 72–81% less memory than the binary and mul-
tiway range searches, respectively. For Funet-40k,
the lookup times of the proposed prefix searches
are only a little better than their range search
counterparts (2–12% less). However, for larger
tables, the lookup times of the proposed prefix
searches are 26–42% less than their range search
counterparts.

We also ran the performance simulations for var-
ious IPv6 routing tables, where two of them are real
small tables obtained from the Internet [2], and the
other three bigger ones are generated synthetically
with similar length distributions to the first two real
tables. The results are shown in Table 5. In terms of
lookup times, the proposed binary prefix search per-
forms better than the binary range search when the
routing table contains 10,000 entries or more. How-
ever, the proposed binary prefix searches consume
significantly less memory than the binary range
searches.

The main drawback of storing the sorted prefixes
in a sequential list is its update process which
requires a reconstruction of the whole list when
inserting or deleting a prefix. Therefore, a feasible
remedy for this is to use the 16-bit segmentation
table in which the update process is reduced to
reconstructing a sublist belonging to the segment
of a prefix being inserted or deleted. As shown in
Table 3, we measure the update time of the binary
prefix search and compare it with other existing
schemes. The update times are calculated with the
the range searches and the proposed prefix searches with a 16-bit

s)
Oix-120k [15]
(120,629 prefixes)

Oix-160k [15]
(159,930 prefixes)

B) 0.267 (1104 KB) 0.304 (1500 KB)
) 0.237 (4696 KB) 0.262 (6133 KB)

B) 0.159 (601.6 KB) 0.188 (843.3 KB)

or the binary prefix searches (BPS) over the binary range searches

andom5k (5000) Random10k (10,000) Random20k (20,000)

00 (0.236/0.236) 0.95 (0.253/0.266) 0.83 (0.282/0.34)
49 (86.0/175.5) 0.50 (176.6/350.5) 0.53 (370.1/ 700.7)
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assumption that the insertion and deletion have
equal probability. We can see that the update speeds
of Btrie-16, PBOB-16, and PST-16 are among the
best. The update time of the collection of red–black
trees (CRBT) is a little bit worse because many trees
need to be modified when a prefix is being inserted
or deleted. The average update time of the proposed
binary prefix search (BPS-16) is better than that of
the binary range search (BRS-16) and the C-16-x
scheme. The multiway versions of the range and
prefix searches do not perform well in terms of
update times, especially for the worst-case update
times (not shown in the table), which are 50 times
slower than the PBOB-16. Since the operations of
inserting and deleting a prefix are very simple, the
update times for the binary trie with or without a
16-bit segmentation are much faster than those of
other schemes.

Integrated performance analysis. Since different
lookup schemes have their merits in terms of
search speed, update speed, and memory consump-
tion, we try to analyze the performance of various
schemes by considering all these three factors
together in the performance test. We first propose
a simple model to analyze the maximum number
of lookups (Ns) that a lookup scheme can sustain
in 1 s when there are Nu update packets to be
processed in the same 1 s period. Nu can be up to
a few hundreds to a few thousands in the real rout-
ing environment [8,11]. Assume that the search
and update operations take Ts and Tu microsec-
onds, respectively. The following equation gives
the result:

T � N þ T � N ¼ 1; 000; 000: ð1Þ
s s u u

Table 6
Integrated performance comparisons in terms of the maximum number
120k table

Ns

a 0.05 0.01 0.005 0.00

Ideal 7,142,857 9,259,259 9,615,385 9,92
Btrie-16 1,953,125 2,090,301 2,108,815 2,12
BRS-16 1,485,884 3,219,575 3,769,318 4,36
BPS-16 2,285,714 4,819,277 5,594,406 6,42
SFT 13,712 67,893 134,147 61
C-16-x 1,115,449 3,341,129 4,451,369 6,06
BS-len 92,165 408,163 714,285 1,78
PBOB-16 2,574,003 2,859,594 2,899,812 2,93
PST-16 1,933,804 2,203,634 2,242,751 2,27
CRBT-16 1,160,964 1,442,544 1,487,646 1,52
To simplify our analysis, we assume Nu = a · Ns.
Thus, we have

N s ¼ 1; 000; 000=ðT s þ a� T uÞ: ð2Þ
To include the memory consumption in the anal-

ysis, we treat the maximum number of sustained
lookups and the memory size as the performance
and the cost of a lookup scheme. Thus, we use the
performance-cost ratio (ratio = Ns/Mem) as the
metric to compare all the schemes.

Table 6 shows the maximum number of lookups
that can be performed using different lookup
schemes for the Oix-120k table. Other tables of dif-
ferent sizes show similar results which are not given
in this paper. We assume that an ideal scheme can
be developed in such a way that it can achieve the
best search speed and the update speed compared
to all the existing lookup algorithms. We also
assume that the ideal scheme needs the same size
of memory as the original routing table with the
assumption of length format. Therefore, the ideal
scheme has the performance of Ts = 0.1 ls and
Tu = 0.8 ls, and needs 663 KB of memory as com-
puted earlier. The parameter a is set to 0.05–0.001.
For the ideal case, it amounts to the update rate
of 10k to 370k updates per second.

As shown in Table 6, the proposed binary prefix
search performs best in terms of the maximum num-
ber of sustained lookups and the performance-cost
ratio. The only exception is when the update rate
is one-twentieth of the lookup rate which is equiva-
lent to more than 100 k updates per second. This
high update rate will not be expected in the near
future. In terms of Ns, the C-16-x scheme [7] per-
forms only a little worse than the proposed binary
of sustained lookups and the performance-cost ratio for the Oix-

Ratio

1 0.05 0.01 0.005 0.001

0,635 10,173 13,966 14,503 14,963
3,864 798 854 862 868
5,668 1,346 2916 3414 3954
0,546 3903 8019 9308 10,683
1,658 21 104 206 941
3,178 972 2913 3881 5286
5,714 40 176 309 771
2,809 725 805 817 826
5,059 244 278 283 287
5,810 59 74 76 78
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prefix search when the update rate is not high. How-
ever, the C-16-x scheme performs much worse than
the proposed binary prefix search when the update
rate is high. If we consider the performance-cost
ratio, the C-16-x scheme performs consistently
worse than the proposed binary prefix scheme.
The small forwarding table (SFT) [5] and the collec-
tion of red–black trees (CRBT) [19] are two extreme
cases whose performance-cost ratios exhibit very
low values. SFT has a fast search speed and a low
memory requirement, but its update speed is low.
In contrast, CRBT has a very fast update speed,
but its memory requirement is high, and the search
speed is fair.

Limitation of the proposed schemes. With refer-
ence to the segmentation table in Fig. 8, our design
supports eight different multiway segments. There-
fore, three bits are sufficient for eight formats. Thir-
teen bits are proposed to represent the number of
prefixes in a segment. Therefore, 8192 prefixes at
most can be supported in one segment. We also
use 16 bits to record the starting block number of
the segment. The total number of memory blocks
supported is up to 64K. If we assume that the aver-
age number of prefixes in a block is five, the sup-
ported routing table can have up to 320K prefixes,
which is sufficiently larger than the size of the back-
bone routers currently employed on the Internet.

It is worth noting that the entry structure of the
16-bit segmentation table in the multiway range
search is 16 bits. One bit is used to distinguish
between information and node pointers. Therefore,
the information array can have at most 32K
elements. It means that the multiway range search
scheme proposed in [12] can only support no more
than 32K routing entries which is smaller than that
of the current backbone routers. To remedy this
drawback, an entry larger than 16 bits must be used,
and the required memory increases. Therefore, the
proposed multiway prefix search is better than the
multiway range search in this aspect.

7. Conclusions

In this paper, we introduced a new method to
compare prefixes of different lengths. By inserting
some auxiliary prefixes, a sequential list of prefixes
can be constructed and searched using binary
search. The proposed scheme uses only 32 bits to
encode one prefix. We showed that the maximum
number of total prefixes generated is less than 2N,
where N is the number of original prefixes. The
sequential list can be easily extended to a multiway
search structure and be enhanced by a 16-bit seg-
mentation table. By considering the CPU cache of
32 and 64-byte cache lines, our scheme can achieve
the worst-case numbers of memory accesses which
are 4 and 3, respectively. The performance analyses
and measurements using both IPv4 and IPv6 tables
showed that the proposed prefix search schemes per-
form better than the existing lookup schemes both
in terms of lookup latency and memory consum-
ption.
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